plot.cv.glmnet.Rd
Plots the cross-validation curve, and upper and lower standard deviation
curves, as a function of the lambda
values used. If the object has
class "cv.relaxed"
a different plot is produced, showing both
lambda
and gamma
fitted "cv.glmnet"
object
Either plot against log(lambda)
(default) or its
negative if sign.lambda=-1
.
Other graphical parameters to plot
Should shading be produced to show standard-error bands;
default is TRUE
A plot is produced, and nothing is returned.
Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent
glmnet
and cv.glmnet
.
set.seed(1010)
n = 1000
p = 100
nzc = trunc(p/10)
x = matrix(rnorm(n * p), n, p)
beta = rnorm(nzc)
fx = (x[, seq(nzc)] %*% beta)
eps = rnorm(n) * 5
y = drop(fx + eps)
px = exp(fx)
px = px/(1 + px)
ly = rbinom(n = length(px), prob = px, size = 1)
cvob1 = cv.glmnet(x, y)
plot(cvob1)
title("Gaussian Family", line = 2.5)
cvob1r = cv.glmnet(x, y, relax = TRUE)
plot(cvob1r)
frame()
set.seed(1011)
par(mfrow = c(2, 2), mar = c(4.5, 4.5, 4, 1))
cvob2 = cv.glmnet(x, ly, family = "binomial")
plot(cvob2)
title("Binomial Family", line = 2.5)
## set.seed(1011)
## cvob3 = cv.glmnet(x, ly, family = "binomial", type = "class")
## plot(cvob3)
## title("Binomial Family", line = 2.5)